
Power Estimation and Optimization Methodologies for VLIW-Based Embedded Systems

Embedded systems are becoming increasingly complex and power-hungry. As a result, there is a growing need for power estimation and optimization techniques to help designers reduce the power consumption of these systems. This book provides a comprehensive overview of power estimation and optimization methodologies for VLIW-based embedded systems. It presents state-of-the-art techniques for estimating and optimizing the power consumption of VLIW-based embedded systems at different design stages, from architecture exploration to software development. The book also covers various power management techniques for VLIW-based embedded systems, including dynamic voltage and frequency scaling, power gating, and sleep modes.

Power Estimation and Optimization Methodologies for VLIW-based Embedded Systems

★ ★ ★ ★ 5 out of 5
Language : English
File size : 3446 KB
Text-to-Speech : Enabled
Print length : 227 pages

Power Estimation Techniques

The first step in power optimization is to estimate the power consumption of a system. This can be done using a variety of techniques, including:

- Analytical models: Analytical models are mathematical models that can be used to estimate the power consumption of a system. These models are typically based on the physical characteristics of the system, such as the number of transistors and the operating frequency.
- Measurement-based techniques: Measurement-based techniques involve measuring the power consumption of a system using a power analyzer. These techniques are more accurate than analytical models, but they can be more time-consuming and expensive.
- Simulation-based techniques: Simulation-based techniques involve simulating the behavior of a system to estimate its power consumption. These techniques are more accurate than analytical models, but they can be more time-consuming and expensive.

Power Optimization Techniques

Once the power consumption of a system has been estimated, it can be optimized using a variety of techniques, including:

- Architecture exploration: Architecture exploration involves exploring different architectural options to find the best trade-off between performance and power consumption. This can be done using a variety of techniques, such as design space exploration and systemlevel modeling.
- Software development: Software development can be optimized to reduce the power consumption of a system. This can be done using a

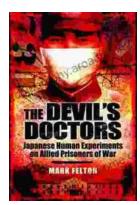
variety of techniques, such as power-aware scheduling and poweraware memory management.

 Power management techniques: Power management techniques can be used to reduce the power consumption of a system by dynamically adjusting the power supply voltage and frequency. This can be done using a variety of techniques, such as dynamic voltage and frequency scaling, power gating, and sleep modes.

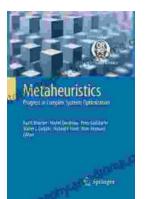
Power estimation and optimization are critical techniques for designing lowpower embedded systems. This book provides a comprehensive overview of power estimation and optimization methodologies for VLIW-based embedded systems. It presents state-of-the-art techniques for estimating and optimizing the power consumption of VLIW-based embedded systems at different design stages, from architecture exploration to software development. The book also covers various power management techniques for VLIW-based embedded systems, including dynamic voltage and frequency scaling, power gating, and sleep modes.

References

- 1. J. Rabaey, A. Chandrakasan, and B. Nikolic, "Digital Integrated Circuits: A Design Perspective," 2nd ed., Prentice Hall, 2003.
- 2. W. Wolf, "Modern VLSI System Design: High-Performance and Low-Power," 4th ed., Prentice Hall, 2008.
- 3. J. Kong, S. Liu, and A. Jerraya, "Low-Power VLSI Design: Circuits and Systems," Springer, 2013.
- 4. L. Benini and G. De Micheli, "Power Optimization Techniques for Embedded Systems," Springer, 2009.


5. S. Borkar, "Design Challenges of Technology Scaling," IEEE Micro, vol. 19, no. 4, pp. 23-29, 1999.

Power Estimation and Optimization Methodologies for VLIW-based Embedded Systems


****	5 out of 5
Language	: English
File size	: 3446 KB
Text-to-Speech	: Enabled
Print length	: 227 pages

The Devil Doctors: A Heart-wrenching Tale of Betrayal and Resilience

The Devil Doctors is a gripping novel that explores the dark side of the medical profession. It follows the story of a young doctor who...

Progress In Complex Systems Optimization Operations Research Computer Science

This book presents recent research on complex systems optimization, operations research, and computer science. Complex systems are systems that...